
Evaluation of the CMT and SCRAM Software Configuration,

Build and Release Management Tools

Alex Undrus

Brookhaven National Laboratory, USA (ATLAS)

Ianna Osborne

Northeastern University, Boston, USA (CMS)

This document summarises an evaluation of two software release tools

CMT and SCRAM which have been identified by the “Software Process

RTAG” as possible candidates for a common tool supported by LCG. The

evaluation of SCRAM has been carried out by a CMT expert, while CMT

has been evaluated by a SCRAM expert. The main goal of the evaluation

was to compare and contrast the tools behaviour in a real environment by

using the tools with a real software project. As a part of the exercise sev-

eral packages of the ATLAS core software (CMT-based) have been configured

and released using SCRAM. Similarly, a SCRAM-based CMS software project

IGUANA has been configured and released using CMT. The evaluation has

been done for SCRAM version V0 19 3 and CMT version v1r12. Based on

the results of the evaluation, SCRAM is proposed as a common tool for LCG

project, by both authors.

I. INTRODUCTION

The web page with CMT/SCRAM evaluation reports is set at

http://www.usatlas.bnl.gov/computing/software/cmt scram.html

This document summarises the evaluation of two release tools: SCRAM (version V0 19 3)

and CMT (version v1r12). The evaluation applied to core software of the ATLAS experiment

and the CMS software project IGUANA.

1

CMT is an official ATLAS and LHCb software release tool. SCRAM is a CMS re-

lease tool. For comparison with CMT, some ATLAS software was built with SCRAM: the

ATLAS/LHCb framework package Gaudi (version 0.9.1) and a part of ATLAS Software

Release 3.2.0 sufficient to run the simple HelloWorld example. The ATLAS software built

with SCRAM can be found at

/afs/cern.ch/atlas/software/dist/nightlies/SCRAM tests/Gaudi 0 9 1

/afs/cern.ch/atlas/software/dist/nightlies/SCRAM tests/AthenaExamples

The HelloWorld example can be run from

/afs/cern.ch/atlas/software/dist/nightlies/SCRAM tests/AthenaExamples/run

with

source environ setting.csh

athena HelloWorldOptions.txt

where environ setting.csh is a script that installs few environment variables, athena is

the ATLAS framework executable (built with SCRAM), and HelloWorldOptions.txt is the

file with options for athena job. The same software built by CMT is located at

/afs/cern.ch/atlas/offline/external/Gaudi/0.9.1

/afs/cern.ch/atlas/software/dist/3.2.0 (full ATLAS release)

IGUANA project released with CMT can be found at

/afs/cern.ch/user/y/yana/work/CMT/IGUANA

IGUANA project released with SCRAM

/afs/cern.ch/cms/Releases/IGUANA

For more information about CMT look at

http://www.cmtsite.org/

SCRAM documentation can be found at

http://cmsdoc.cern.ch/Releases/SCRAM/current/doc/html/index.html

2

II. CODE MANAGEMENT

A. CMT

• CMT software release is a set of duets: “elementary” packages and their versions. The

sample organisation of a CMT release is shown in Fig. 1. The internal structure of a

package is restricted and requires version directories that in their turn contain sources,

binaries, and the cmt directory that holds the configuration information needed by

CMT in the form of requirements file. These files have a complicated syntax (30

configuration parameters with numerous options). There is no common release areas

for binaries or includes packages (such as bin, lib). The compilation of each package

is performed in its own subdirectory where all resulted binaries are put.

• CMT uses a CVS interface that allows to perform a limited number of cvs commands.

The CMT directory structure with version directories precludes a direct CVS checkout

(because there are no version directories in the CVS repository).

• CMT uses version identifiers based on CVS symbolic tags.

3

PACKAGE_X p_release

package_A_a package_A_a_00_00_01

package_A_b package_A_b_00_00_01

package_a package_a_00_00_01

CERNLIB

p_policy

cmt

run

CERNLIB_00_00_01

cmtp_policy_00_00_01

 p_release_00_00_01

container_A container_A_00_00_01 cmt

 Linux

Sun

cmt

 Linux

Sun

src

cmt

 Linux

Sun

src

cmt

 Linux

Sun

src

cmt

 Linux

Sun

Structure of a CMT package (software release)

requirements (config. specification)

files and links for running applications

 build area for an individual package

sources area (fixed location)

FIG. 1. Organisation of a CMT software release.

B. SCRAM

• SCRAM works with software “projects” that can include many software packages. The

“project” (structure shown in Fig. 2) is a releasable unit (in sense that it is marked

by a version name) and it consists of a set of documents which describe the structure

and distribution of the project (in config directory), build configuration (in config

directory), automatically generated external product descriptions (in .SCRAM direc-

tory), and project areas (libraries, binaries, includes, sources). The “project” consists

of subpackages that do not have individual versions (that is each time a subpackage is

changed the whole project should be released to get a new version). The organisation

of subpackages is not restricted. There could be container packages. The names of

4

source code directories are optional (CMT expects that software sources are in src

directories). The actual compilation is performed in special tmp area and resulted

binaries are moved to project areas (such as bin, lib...).

• SCRAM uses CVS, but it does not depend on it. The physical structure of a releasable

unit source code is identical to its physical structure in CVS.

• SCRAM uses CVS symbolic tags for versioning.

PROJ_0_0_1

config

src package_A_acontainer_A

package_b

package_a

package_A_b

bin Linux

Sun

lib Linux

Sun

tmp Linux

Sun

 include Linux

Sun

SCRAM tools database

SCRAM documents and configuration

binaries

shared libraries

compilation area

include files of a project

sources (structure and dir names optional)

Structure of a SCRAM project

 .SCRAM

FIG. 2. Organization of a SCRAM project.

5

C. Comments

The organisation of a SCRAM releasable unit is more flexible. It has more transparent

access to the source code stored in a CVS repository. The CMT release has fixed organisation

and lacks common areas for binaries and includes.

III. BUILD SYSTEM

A. CMT

• CMT generates makefiles out of internal make fragments. Users have a limited ability

to customise makefile macros in requirements files. There is a limited opportunity to

add fragments to makefiles (so called pre-defined generic “templates” should be used).

The CMT manual provides recipes for creating makefiles fragments for handling a

support of languages and specialised document generators. For other non-standard

actions a user may override internal CMT make fragments, but only “in the case of

deep understanding of what the original CMT fragment does” (according to CMT

manual).

• CMT calculates the building order from the requirements files.

B. SCRAM

• In SCRAM documents the makefiles are associated with packages. That is packages

can be built with individual makefiles. SCRAM is flexible about tools used to build

(e.g. could invoke preprocessing tools such as autoconf, moc, etc.). The packages

individual makefiles are in fact treated as fragments of the final makefile generated by

SCRAM, but the user has a freedom to create and build necessary targets.

• SCRAM compiles and links packages in the build order indicated in the project con-

figuration file (“config/BuildFile”).

6

• SCRAM provides additional (though limited) opportunities to customise a build pro-

cess using the BuildFile tags like appending libraries to the link line or adding include

paths. A user can define a new tool or new rules for additional customisations. It ap-

pears desirable to expand BuildFile tags adding opportunities like changing the name

of library from the default or prepending libraries to the link line.

• SCRAM mechanically adds information from the packages BuildFiles and generates

long make commands with repeating compiler flags. For example, if package A uses

B, and both A and B use Gaudi, then SCRAM generates make commands with two

sets of Gaudi include and library paths. It seems desirable to filter out repeating flags

(it has been implemented in SCRAM V0 19 4).

C. Comments

Both tools use make. Both tools do not reveal cyclic dependencies. Customisation of

builds is much easier with SCRAM.

IV. CONFIGURATION MANAGEMENT

A. CMT

• The full set of software packages of the experiment (such as ATLAS) is naturally

organised in the form of one Software Release. A special glue package describes the

structure of a Software Release and other glue packages provide connections to external

software.

• External tools are described in “glue packages” that contain configuration specifica-

tions in its requirements files. This substantially increases the number of packages.

About 50% packages of CMT-style Gaudi are descriptions of external packages (such

7

as CERNLIB, ROOT...). CMT does not check the availability of external tools, the

problems are revealed at compilation or runtime phases.

• Version defined in the requirement file may or may not correspond to the actual version

of the tool.

B. SCRAM

• Consistent configuration of SCRAM-based projects and external software packages

is defined by an XML-like description (CMSConfiguration), where each project or

package is considered as a tool and is described in a separate document.

• External tools are described in special documents that contain information on loca-

tion of libraries, binaries, include files; library names and link ordering; dependencies;

platform specifics; documentation links. The tool documents are downloaded simulta-

neously with the project sources.

• Once the tool documents are loaded with scram setup command it is possible to

reload them by the second scram setup -i or to load them via a URL of the tool.

An automatically generated .SCRAM directory with tools descriptions created in the

user’s area is not protected from the user.

• SCRAM checks the existence of external tools (directories and libraries) as defined in

a project configuration. A user has an opportunity to ask SCRAM to skip the settings.

C. Comments

SCRAM promotes the configuration of experiment’s software in the form of a hierarchy

of projects. Projects can be separately installed and tested. CMT recommends to organise

the experiment’s software in one releasable unit. The mechanism for partial installation of

8

a release (for instance when a user wants to install reconstruction related software only and

does not want simulation related software) is not provided by CMT.

V. RELEASE AND DISTRIBUTION

A. CMT

• CMT installs soft links in the build area of a package to shared libraries of other

packages and data files in the special run directory. Executables are supposed to

be run from this run directory. When dealing with large projects, CMT can create

very long LD LIBRARY PATH with paths to library files that are dispersed in the

individual package areas (this creates problems for tcsh users because this shell limits

the length of environmental variables to 1 - 4 kB).

B. SCRAM

• SCRAM has extremely useful web interface that allows to download the project sources

and configuration with single click. Download without web browser is also possible.

• SCRAM suggests runtime environment settings for released or developer project. Since

all libraries and binaries of a project are located in common “bin” and “lib” areas the

installation of a runtime environment is not a problem.

C. Comments

Both tools allow site specific installation (that is environment is automatically tuned for

different computing facilities). Information about binaries downloads is not immediately

available for both SCRAM and CMT.

9

VI. DOCUMENTATION AND EASE OF USE

A. CMT

• Complete but complicated documentation, lacks index and quick start section.

• Tutorials are available.

B. SCRAM

• SCRAM documentation is poor. Many details and some command options are not

described, though available through “scram help”.

C. Comments

SCRAM is much easier to learn and use providing that a SCRAM expert is available for

help (important details are missed in documentation). The complexity of SCRAM features

available to a user always matches the user’s experience with SCRAM.

VII. CONCLUSION

Both SCRAM and CMT are working release management tools. SCRAM is based on

PERL scripts and, while it has poor documentation, those scripts are possible to read (and

even adapt) for learning purposes while CMT is a large C++ package that can be changed

only by a very experienced person. SCRAM allows to define more flexible directory structure

of a project. The structure of a SCRAM-based project is defined from the top to the bottom

and allows to avoid repetitive configuration information. It doesn’t need to have versions

directories and it can have common bin, lib, include areas. CMT maintains packages in

more sophisticated way trying to handle consistently their declared relationships to each

other through a version identification model. The penalty is the numerous requirements files

10

with complicated syntax and “glue packages” that contain no source code, but description of

the package dependencies. CMT fully generates environment and makefiles for the packages

from the requirements files.

Both authors came to a conclusion that SCRAM is easier to learn and use, and it is more

flexible than CMT in definition and configuration of a releasable unit. SCRAM has more

convenient system of external tools description and it checks their availability. Though,

the SCRAM build system has some limitations (for instance, one library per package), it is

considerably easier to customise than the CMT one. Release management with SCRAM is

more efficient. Both authors recommend SCRAM as a configuration, build, and release tool

for LCG project.

11

